
Fordham University

Intelligent Ground Vehicle Competition 2011

Mario

Stephen Fox, Ilya Naoumov, Emir Ogel, Bryan de la Rosa, Margaret Wolf, Rosa
McGee, and Brendan Offer

Robotics and Computer Vision Laboratory
Fordham University

441 E. Fordham Road, Bronx, NY

Faculty Advisor Statement: I hereby certify that the engineering design of
Mario was done by the current student team and has been significant and
equivalent to what might be awarded in a senior design course.

Signature: Date:

CONTENTS 1

Contents

1 Team Overview 2

2 Team Approach to Software 3

3 Hardware Overview 5
3.1 Base Platform . 5

4 Software for Sensors 7
4.1 Stereo Vision . 7

4.1.1 Lane Following . 7
4.1.2 Flag Detection . 9

4.2 A100 Hemisphere GPS . 10

5 Vehicle Control Software 11
5.1 Vector Field Histogram . 11
5.2 Waypoint Driving . 11

6 Testing, Benchmarking and Documentation 12
6.1 Documentation Procedures . 12
6.2 Parameter Calibration Techniques . 12

Team Overview 2

1 Team Overview

Fordham University’s IGVC team is comprised of seven undergraduate students

ranging from seniors to freshmen. Team members are split between two of our New

York City campuses located at Lincoln Center in Manhattan and at Rose Hill in the

Bronx. The Fordham Robotics and Computer Vision Laboratory (FRCV Lab) is

based at the Rose Hill campus, which is approximately a forty-five minute commute

from Lincoln Center. In order to allow students at both campuses to participate,

we carefully organized the team in such a way that, given a sufficient grounding

in a professional collaborative work flow, remote work would be both possible and

efficient.

Drawing from experiences last year, we first focused on centralizing the work flow

of the team in order to foster collaboration within a large group. In the fall semester,

we recruited many students who volunteered to participate in the design and devel-

opment of the software and hardware components of the robot. With about eighteen

interested students, it was imperative that we set up a versioned code repository,

ticketing system, and documentation wiki. We explored multiple possibilities, such

as Sourceforge.net and other free services; we also considered hosting our own ser-

vice, but ultimately we secured generous sponsorship from Projectlocker.com for a

subversion subscription service integrated with the popular Trac ticketing and wiki

system, exactly the services we had decided upon before setting out on our search

for a solution. Sponsorship from Projectlocker.com cut out the overhead of setting

up, maintaining and securing a central server for our collaboration.

Once the collaborative infrastructure was in place, we divided the team into sev-

eral smaller groups to facilitate rapid productivity and training. The fall semester

consisted primarily of training for software development techniques, the collaborative

work-flow process, and software development in a Linux/UNIX environment. Our

robot runs on Debian Linux, so the ability to develop software in a Linux/UNIX

environment is a necessary skill for productive contribution; many of the freshmen

members of the team had no prior experience working in a Linux/UNIX environment.

Team Approach to Software 3

Furthermore, no robotics background is required to join the robotics team. In order

to establish a baseline of robotics knowledge, we developed the basic framework of

robotics research, motivating our contribution to the field through this competition.

The team studied occupancy grids, basic mapping and localization techniques, var-

ious sensors available for robotics, and sensor fusion techniques. For the duration

of the fall semester, we met twice weekly: once as a full team for training, and

additionally as small groups of three for task-focused work.

The team changed significantly in the spring semester. Four students in the

fall received academic credit for their workthrough the Computer and Information

Science Department’s Senior Projects and Internships course. These students were

required to produce written reports and meet with closely with the team lead and the

faculty advisor, Professor Lyons, throughout the semester. However, participation

on our team is otherwise entirely voluntary, so many students who contributed in

the first semester were unable to continue second semester because of graduation,

paid internships and other compelling career opportunities. Our team in the spring

has consisted of the seven students listed as the authors of this paper. In order

to compensate for the reduction of resources in the second semester, the team lead

met individually with members of the team throughout the week and held a weekly

scrum meeting on Thursday afternoons. All students who participated in the second

semester voluntarily produced a short written report each week, and gave presenta-

tions on current progress. At the scrum meetings, demonstrations of achievements

were given to the entire team, and tasks for the following week were clearly laid

out at a pace acceptable for extracurricular work. We found this model to be very

productive.

2 Team Approach to Software

The skill levels of our team members is widely varied. Some are strong software

engineers; others are freshmen with only intro-level programming experience. We

elected not to limit participation on the team on the basis of skill, but rather ded-

Team Approach to Software 4

ication and interest. Particularly, since this is only the second year that Fordham

is particpating in the competition, we strongly believe that investing time in devel-

oping skills of novice members will help maintain continuity after senior members

graduate. To account for the disparity in skill, we designed the software architecture

in such a way that everyone would be able to contribute productively. We use a

modular software architecture implemented in C++ using the ARIA library [?] as

our robot meta-operating with the on-board the Debian Linux computer. A modular

architecture affords us a number of advantages. We can

1. Exchange modules with the same interface to change functionality (our sensor

modules follow a common interface),

2. Allocate modular tasks based on skill level,

3. Test modules individually to identify functional problems, and

4. Make development progress on individual modules or clusters of modules with-

out being held back by incomplete ones.

We have found this architecture to be a crucial aspect of the development of our

software suite, providing a framework within which novice members have been able

to gradually accept more difficult tasks as their software development capabilities

mature.

In addition to a modular architecture, collaboration was a key aspect of our team’s

development lifecycle. We utilized our subversion repository for rapid collaboration,

modification, and merging of software changes. This gave our team the ability to

quickly diagnose problems in each others modules. Detailed notes and log messages

have also made it easy to track our progress, motivating us to change the pace of our

work if at any point we fell behind.

Hardware Overview 5

3 Hardware Overview

3.1 Base Platform

We are using a modified Pioneer 3 - AT model robot manufactured by Adept Mo-

bileRobots (formerly known as Mobile Robots, Inc.). The platform is equipped with

a 44.2368 MHz Renesas SH2 32-bit RISC microprocessor with 32K RAM and 128K

FLASH memory to handle communication with many of the robot’s components,

including the motor controllers [1]. It is further equipped with a 1.8 GHz Pentium

M processor with 512 MB of RAM, a 2.5 inch 120 GB SATA HDD, and serial ports.

We found that 512 MB of RAM was insufficient, particularly for processing large

sets of point cloud and image data, so we upgraded the memory to 1 GB of RAM.

For remote access in the field, the machine is equipped with a wireless b/g card.

We have customized the sensors of our Pioneer 3 platform by adding a Point

Grey BumbleBee 2 stereo vision camera mounted on a PTU-D46 pan-tilt unit for

precise control of its movement and a broader field of view. Stereo vision provides us

a sensor which returns depth, as well as color image data. We use the ARIA drivers

for manipulating the pan-tilt unit, the proprietary Triclops SDK for communicating

with the BumbleBee 2 camera over IEEE1394, and the OpenCV 2.1 library for

manipulation of image data.

Last year, we used a SICK LMS200 laser range finder; however, the Pioneer 3

platform has a very limited supply of power (three 7.5 Ah 12 V lead-acid rechargeable

batteries) relative to the energy consumed by the SICK LMS200 device. Maintaining

battery life sufficient for both efficient testing, and running the course was a major

difficulty last year: our battery life was less than fifteen minutes with the motors

and the laser. For this reason, we have elected to use a sensor which consumes

significantly less power, having fewer moving parts, providing us a consistent battery

life of more than three times our previous configuration.

In order to qualify at the competition, we have had to make certain modifications

to the hardware of the Pioneer 3 platform we had avaible to work with. We have

made the following hardware modifications:

3.1 Base Platform 6

1. Expansion of the chassis to meet the minimum size requirements of 3 ft.x2 ft.,

2. Replacing the hard-wired kill switch with a larger, centralized kill switch for

improved safety,

3. Addition of a 100 ft. wireless kill switch,

4. Tuning of the system’s hardware settings to maintain the minimum average

velocity of 1 MPH, and finally

5. Addition of a differential GPS unit for qualification and participation in the

navigation competition.

The superstructure is made of 80/20 T-slotted aluminum [2] . We selected the

80/20 T-slotted material over cheaper generic aluminum for its stability and ease

of assembly. The structure, designed by junior Bryan de la Rosa, is an essential

part of our system integration plan. Primarily, the stereo camera has a very narrow

field of view, and a considerable blind spot for near obstacle avoidance. In order to

compensate for this, we have recessed the camera and raised it to a height suitable

for safely obstacles, flags, and lane markers in a forward-facing direction. We have

mounted the camera 15 cm from the front of the robot, and 75 cm from the ground

plane.

We are using a Hemisphere A100 Smart Antenna GPS unit to triangulate our

position and, while in motion, obtain headings toward our waypoints. Mounting the

GPS unit was a problem at first: it could acquire a strong signal in a low location, but

interference caused a signal lock to be unpredictable, or often lost. We determined we

needed mount it in a high position, but out engineer working with our superstructure

was able to attach the mount near our camera which has allowed us to get much

more consistent readings. This minimizes interference, particularly from the electric

motors of the chassis, and provides a clear view of the entire sky, independent of the

robot’s orientation. We have mounted it roughly in the center of the robot, 70 cm

from the ground plane.

Software for Sensors 7

There is an additional space that was constructed behind the GPS unit. This

space is intended to provide weatherproofing of the vehicle, storage for other elec-

tronic devices, including the wireless kill switch and the compass, and an area to

mount the payload. The structure will ultimately be covered in a plastic exterior,

thus weatherproofing internals of the robot and providing a professional appearance.

4 Software for Sensors

4.1 Stereo Vision

Our primary sensor for obstacle avoidance and environment modeling is the Point

Grey BumbleBee 2 IEEE 1394 color camera mounted on a pan-tilt unit. The Point

Grey’s proprietary Triclops SDK provides a robust interface for obtaining data from

the digital camera, as well as accessing and calibrating the on-board processing

provided by the unit. Further image processing is done with the OpenCV 2.1 [3]

library.

Using the Triclops SDK, the stereo vision pipeline first computes disparity, after

which depth is computed for each pixel. Points with bad disparity are ignored, and

the remaining pixels are converted to a 2.5D point cloud. Once the lane and flag

detection modules have processed the data, the point cloud is converted to a PCL [4]

point cloud data structure, which is then filtered using the built-in statistical removal

filter, and downsampled before being input into our obstacle avoidance algorithm.

We have found that downsampling greatly improves our the frequency at which we

can process data.

4.1.1 Lane Following

Our first step is to mask the image for points within a 10 cm threshold of the

ground plane. This allows us to run our analysis without false positives from white

obstacles or the white lines on the orange construction barrels. In last year’s compe-

tition, we did not use a stereo camera, but instead used a homography to map the

4.1 Stereo Vision 8

image plane to the ground plane; to prevent convolution of lanes with white obsta-

cles, this required a much more complicated algorithm than this elegant integration

with the point cloud.

Once we have masked the image for the ground plane (simply by nulling pixels

linked to a vertical threshold above our desired one), we process the image first

by filtering it through a colormask. The exact parameters of this threshold is best

determined empirically on a large set of data with similar lighting conditions to those

expected at the competition. For this reason, we have developed a user interface

which allows us to easily fine-tune the parameters at the competition.

Next, we convert the image to grayscale, at which point we filter it through a

binary threshold. The remaining pixels in the image which are not black are search

with OpenCV’s built-in Hough Line Detection function, parametrized to search for

lines of sufficient length and to ignore noise. We have found the parametrization of

this step to be particularly important, for dead grass, reeds, and other background

objects on the ground can cause many false positives.

Hough Line Detection returns a compact data structure of the location of the

lines in the image. At this point, we access our point cloud through the known u, v,

and modify the height of the lines directly, by raising their vertical values in 3-space.

Our lane following algorithm fuses the 2.5D spatial data with the standard image

Left
(Reference)

Image

Red Color
Mask

Convert
to Binary

Hough
Line

Detection

Link to
Point Cloud

Modify
Point
Cloud

Figure 1: Lane Detection Pipeline

data. The image from the left reference camera is stored as an OpenCV IplImage*

data type, allowing us to access the pixels by their u, v coordinates. In order to link

this to our point cloud data type, we created an array data structure of the same

dimensions as the image. In each cell, we store a pointer to our 3D points within the

point cloud.

4.1 Stereo Vision 9

(a) Original Image (b) Depth Masked Image (c) Colormasked

(d) Grayscale Image (e) Thresholded Image (f) Hough Line-detect Image

Figure 2: Lane-detection Image Pipeline

4.1.2 Flag Detection

Before the flag detection pipeline can be run to detected flags it must be calibrated

to optimally filter images for the green and red flags. A vital part of our algorithm is

changing the color space from RGB to YCrCb. This is a vital part of our algorithm

because the YCrCb colorspace isolates the intensity values which are convoluted with

the RGB values in the other colorspace. This allows for more consistent filtering in

our flag detection module independent of changes in lighting. We designed a simple

graphical interface using OpenCV to easily determine the range of filter of the image

for Cr and Cb values. This must be done for each the green and red flags. The user

interface will be used at the competiton to improve the calibration of the current

module, which will be stored in the global calibration file. For the current calibration

program, we used a large set of stored data from the course at the Student Ground

Robotic Demonstration on the National Mall this past April [5].

For the flag detection module pipeline, the image is received from the stereo

vision driver. Next, we use OpenCV to convert the color space from RGB to YCrCb.

Afterwards, the image is masked appropriately for each flag by using the calibration

4.2 A100 Hemisphere GPS 10

(a) Original Color Image

(b) Green Flag Detection (c) Red Flag Detection

Figure 3: Flag Detection Pipeline

settings. Once the green and red flags have been located, we return pixel coordinates

of rectangular bounding boxes of the flags. The Navigation module receives these

pixel coordinates, which are linked to the depth map, to determine each flag’s position

relative to the vehicle. Once it has these relative positions, the navigation module

sets virtual waypoints between sets of flags to guide its goal seeking behavior.

4.2 A100 Hemisphere GPS

The Hemisphere GPS A100 Smart Antenna was purchased through Hemisphere’s

Educational and Research Sponsorship Program [6]. They provided a training session

that helped to familiarize us with the device. After understanding the theoretical

fundamentals of GPS navigation, including differential GPS, we implemented soft-

ware to integrate the GPS unit with ARIA’s built-in GPS library class. However,

the ARIA driver was insufficient for our needs. In order to take advantage of the

on-board processing and expanded information provided by the A100 GPS unit, we

designed a driver to interface with the binary messages produced by the device. The

binary messages allows us to obtain more information in a single message than is

Vehicle Control Software 11

packed in the standard NMEA messages.

5 Vehicle Control Software

5.1 Vector Field Histogram

We have implemented a modified version of the Vector Field Histogram Plus [7,

8]. The original papers call for an occupancy grid; however, we have implemented

a stateless, goal-seeking algorithm integrated with our 2.5D, down-sampled point

cloud for fast obstacle avoidance with minimal hysteresis. Testing for our VFH

module was originally done in MobileSim distributed with the ARIA SDK for the

Pioneer platforms. However, the turning behavior of the actual vehicle and the

simulated vehicle are quite different. We have done extensive outdoor testing to fine

tune the parameters of the VFH to maintain the minimum velocity required by the

competition.

5.2 Waypoint Driving

For the Navigation Challenge, we have developed a two-part strategy. We first

preprocess the posted coordinates, searching for clusters of GPS waypoints. By lo-

cating areas of the field that are most populated with waypoints, the robot’s software

is able to concentrate on an areas where the waypoints are relatively close to one

another. In the event of low power or other hardware problems, this assures that

the robot is able to reach the maximum number of waypoints possible. The robot’s

decision to approach a particular waypoint is based on a special distance-obstacle

heuristic.

The second part of our strategy focuses on the robot’s performance on the field.

In order to prevent the robot from frequently moving through the fence in pursuit

of waypoints, we designed software that allows the robot to detect the fence in the

middle of the field to create a “virtual wall” that further divides the clusters of

waypoints. This will prevent the robot from crossing the wall (once detected by the

Testing, Benchmarking and Documentation 12

stereo vision) until all the waypoints on the fist half of the fence have been reached.

The robot’s goal headings are calculated by using Haversine’s formula. By taking

a reading of the robot’s current location and the coordinates of the waypoint, the

waypoint module is able to find the heading necessary to reach the goal with respect

to North. This provides an “ideal” input to our modified Vector Field Histogram

local obstacle avoidance module, which determines a set of safe directions for the

vehicle to move.

6 Testing, Benchmarking and Documentation

6.1 Documentation Procedures

One important feature of our software development lifecycle has been document-

ing the code we write. This enables modules within our software suite to be utilized

for other projects with minimal overhead. Each student on the team learned our

standardized Doxygen documentation practices, which produces an API reference

in both LATEXand HTML format. All internal and external functions must be doc-

umented appropriately, describing the input parameters and expected output, and

each module, usually wrapped in a C++ class, is documented for expected function-

ality with references to algorithms used within.

6.2 Parameter Calibration Techniques

Many of our modules require unique calibration of parameters based on the char-

acteristics of the environment. On account of frequent bad weather, we have had to

test our vehicle in various environments, particularly mock courses set up indoors

during the winter time. To facilitate the tuning of parameters, we have developed

graphical user interfaces to quickly define new parameters for our software which

can be input into a global configuration file loaded at run-time. This prevents us

from having to recompile our software while testing or tuning the system, saving us

valuable time and battery life while testing in the field.

REFERENCES 13

Using the robot’s on-board wireless card, the vehicle can broadcast an ad-hoc

connection, or connect to a wireless access point. We establish a connection to the

robot through either a remote SSH connection from a laptop, or through a TCP

client-server connection.

In addition to extensive field testing, we have designed a miniature mock course

for basic testing inside our laboratory. This was necessary in order to maintain the

pace of development throughout the winter, where we received record amounts of

snow in NYC. We purchased synthetic outdoor carpet grass from Home Depot, on

which we painted broken and solid white lines, and created our own construction

barrels and horses.

Furthermore, we utilized MobileSim, software distributed with the ARIA library

that is built on an older version of the Stage simulator. However, while this helped

to test the dynamics of our obstacle avoidance system, simulation is less useful for

stereo vision than sonar and laser range finding sensors.

Special Thanks

Special thanks to our faculty advisor, Professor Damian M. Lyons, in the Computer

and Information Science Department at Fordham University. He generously volun-

teered his time outside of class to work individually with every member of the team.

We would also like to thank the Fordham University Deans for sponsoring our travel,

and continually encouring our work in the Fordham Robotics and Computer Vision

Laboratory.

References

[1] Mobile Robots Inc., 19 Columbia Drive, Amherst, NH 03031, Pioneer 3 Opera-

tions Manual, version 5 ed., July 2007.

[2] “80/20 R© Inc.” http://www.8020.net.

REFERENCES 14

[3] “Opencv (open source computer vision) library.”

http://opencv.willowgarage.com/wiki/.

[4] R. B. Rusu and S. Cousins, “3D is here: Point Cloud Library (PCL),” in IEEE In-

ternational Conference on Robotics and Automation (ICRA), (Shanghai, China),

May 9-13 2011.

[5] “Auvsi foundation: Student ground robotics demonstration on the national

mall.” http://www.auvsifoundation.org/dcdemo.

[6] “Hemisphere GPS.” http://www.hemispheregps.com.

[7] J. Borenstein and Y. Koren, “The vector field histogram-fast obstacle avoidance

for mobile robots,” Robotics and Automation, IEEE Transactions on, vol. 7,

pp. 278–288, August 2002.

[8] I. Ulrich and J. Borenstein, “VFH+: Reliable Obstacle Avoidance for Fast Mobile

Robots,” pp. 1572–1577, 1998.

